Dirichlet distribution

Creator
Creator
Seonglae Cho
Created
Created
2023 Apr 4 2:29
Editor
Edited
Edited
2025 Mar 12 12:26

Exponential family distribution over the
Probability simplex
, essentially a distribution over multinomial distributions.

A set of probability distributions used to model probabilities for each class in multiclass problems and describe proportions
Specific case of
Beta Distribution
P(θα)=Γ(k=1Kαk)k=1KΓ(αk)k=1Kθkαk1where Γ(n)=(n1)!P(\boldsymbol{\theta} \mid \boldsymbol{\alpha}) =\frac{\Gamma \left( \sum_{k=1}^{K} \alpha_k \right)}{\prod_{k=1}^{K} \Gamma (\alpha_k)}\prod_{k=1}^{K} \theta_k^{\alpha_k - 1}\\ \text{where } \Gamma(n) = (n - 1)!
  • α\alpha controls the mean shape and sparsity of θ\theta
  • Value of α<1\alpha < 1 create increasingly sparse outputs
 
 
 
 

Recommendations