Papers with Code - ELU Explained
The Exponential Linear Unit (ELU) is an activation function for neural networks. In contrast to ReLUs, ELUs have negative values which allows them to push mean unit activations closer to zero like batch normalization but with lower computational complexity. Mean shifts toward zero speed up learning by bringing the normal gradient closer to the unit natural gradient because of a reduced bias shift effect. While LReLUs and PReLUs have negative values, too, they do not ensure a noise-robust deactivation state. ELUs saturate to a negative value with smaller inputs and thereby decrease the forward propagated variation and information. The exponential linear unit (ELU) with $0 < \alpha$ is: $$f\left(x\right) = x \text{ if } x > 0$$ $$\alpha\left(\exp\left(x\right) − 1\right) \text{ if } x \leq 0$$
https://paperswithcode.com/method/elu