[MTL] GradNorm : Gradient Normalization for Adaptive Loss Balancing in Deep Multitask Networks 논문 리뷰
오늘은 Multitask Learning(MTL) 분야의 논문인 GradNorm(2018, ICML)에 대해 리뷰해보려고합니다. 다소 오래 전에 발표되었지만 아직까지 MTL 분야에서 밴치마크 성능으로 자주 등장하는 논문입니다. 제가 이해한 바를 정리한 것이니 잘못된 점은 댓글 부탁드립니다! :D 1. Introduction # MTL과 Task Balancing 우리가 흔히 알고있는 딥러닝의 학습 체계는 Single-task learning(STL)이라고 할 수 있습니다. Multi-task learning의 방식은 딥러닝의 등장 전부터 존재했지만, 딥러닝이 등장하며 Single-task learning 학습체계는 Computer Vision 분야에서 인간을 능가하는 퍼포먼스를 보여주고 있습니다. 하지만..
https://daeun-computer-uneasy.tistory.com/61