Texonom
Texonom
/
Engineering
Engineering
/Data Engineering/Data Processing/Signal Processing/Time signal/Delta function/
Kronecker delta function
Search

Kronecker delta function

Creator
Creator
Seonglae Cho
Created
Created
2025 Mar 22 16:15
Editor
Editor
Seonglae Cho
Edited
Edited
2025 Mar 22 16:17
Refs
Refs
δij={1,i=j0,i≠j\delta_{ij} = \begin{cases} 1, & i=j \\ 0, & i \ne j \end{cases}δij​={1,0,​i=ji=j​
 
 
 
 
Kronecker delta
In mathematics, the Kronecker delta (named after Leopold Kronecker) is a function of two variables, usually just non-negative integers. The function is 1 if the variables are equal, and 0 otherwise: δ i j = { 0 if  i ≠ j , 1 if  i = j . {\displaystyle \delta _{ij}={\begin{cases}0&{\text{if }}i\neq j,\\1&{\text{if }}i=j.\end{cases}}} or with use of Iverson brackets: δ i j = [ i = j ] {\displaystyle \delta _{ij}=[i=j]\,} For example, δ 12 = 0 {\displaystyle \delta _{12}=0} because 1 ≠ 2 {\displaystyle 1\neq 2} , whereas δ 33 = 1 {\displaystyle \delta _{33}=1} because 3 = 3 {\displaystyle 3=3} .
Kronecker delta
https://en.wikipedia.org/wiki/Kronecker_delta
 
 
 

Recommendations

Texonom
Texonom
/
Engineering
Engineering
/Data Engineering/Data Processing/Signal Processing/Time signal/Delta function/
Kronecker delta function
Copyright Seonglae Cho