L2, MSE, Quadratic loss
If we assume the error follows a normal distribution, the log likelihood is . Maximizing this leads to the derivation of MSE.
Analogous to assuming normal-distributed errors for deterministic model.
Sensitive to outliers.
Mean squared error
In statistics, the mean squared error (MSE)[1] or mean squared deviation (MSD) of an estimator (of a procedure for estimating an unobserved quantity) measures the average of the squares of the errors—that is, the average squared difference between the estimated values and the actual value. MSE is a risk function, corresponding to the expected value of the squared error loss.[2] The fact that MSE is almost always strictly positive (and not zero) is because of randomness or because the estimator does not account for information that could produce a more accurate estimate.[3] In machine learning, specifically empirical risk minimization, MSE may refer to the empirical risk (the average loss on an observed data set), as an estimate of the true MSE (the true risk: the average loss on the actual population distribution).
https://en.wikipedia.org/wiki/Mean_squared_error
[딥러닝] 목적/손실 함수(Loss Function) 이해 및 종류
목적/손실 함수(Loss Function) 이란? 딥러닝 혹은 머신러닝은 컴퓨터가 가중치를 찾아가는 과정이다. 일단 아래 예를 보도록 해보자. 4 = 2a + b 6 = 3a + b 이와 같은 문제가 있다고 가정을 해보자, 사람들에게 a와 b에 들어가야 되는 답은 무엇인가? 라고 물어본다면 값을 대입해서 문제를 풀어본다던지 직관적으로 풀어본다던지 아니면 여러가지 공식을 써서 풀어본다던지 할 것이다. 2번과 3번과 같은 경우 컴퓨터에게 시키기에는 매우 힘든 작업이다. 반대로 값이 엄청 많을 경우 1번은 인간에게 힘들 수 있다. 물론 위의 문제는 너무 쉽기 때문에 값을 대충 대입해서도 충분히 맞출 것이다. 컴퓨터는 기본적으로 첫번째 방법인 값을 대입해서 문제를 풀어본다. 그래서 대입한 결과와 실제 정답간의 ..
https://needjarvis.tistory.com/567

Seonglae Cho