Numba, an open-source JIT compiler, accelerates Python code by translating subsets, particularly numerical functions, into optimized machine code using LLVM
- Heavy Numerical Computations
- Performance Boost
- Ease of Use
- CPU and GPU programming.
from numba import jit import numpy as np # Numba decorator to optimize the function @jit(nopython=True) defcomplex_calculation(data): # Example: A complex mathematical operation result = np.exp(data) * np.log(data) return result @jit(nopython=True) def custom_normalize(data, lower=0, upper=1): min_val = np.min(data) max_val = np.max(data) numerator = (data - min_val) * (upper - lower) denominator = max_val - min_val return numerator / denominator + lower # Large array of data large_data = np.random.rand(1000000) # Function execution optimized_result = complex_calculation(large_data) normalized_data = custom_normalize(data)