Conservation of Energy

Creator
Creator
Seonglae Cho
Created
Created
2023 Sep 13 3:31
Editor
Edited
Edited
2025 Oct 6 23:8

First Law of Thermodynamics

Symmetry of physical laws under variation of the path in time

Principle of stationary action →
Euler–Lagrange equation
\begin{align} t &\rightarrow t + \varepsilon \\[6pt] L' &= L + \varepsilon \frac{dL}{dt} \\[6pt] \frac{dL}{dt} &= \frac{\partial L}{\partial x} \frac{dx}{dt} + \frac{\partial L}{\partial v} \frac{dv}{dt} \\[6pt] \frac{\partial L}{\partial x} &= \frac{d}{dt}\left( \frac{\partial L}{\partial v} \right) \\[6pt] \frac{dL}{dt} &= \frac{d}{dt}\left( \frac{\partial L}{\partial v} \right)\frac{dx}{dt} + \frac{\partial L}{\partial v}\frac{dv}{dt} \\[6pt] \frac{dL}{dt} &= \frac{d}{dt}\left( \frac{\partial L}{\partial v} \right)v + \frac{\partial L}{\partial v}\frac{dv}{dt} \end{align}

Conservation of Energy

For a static empty universe
\begin{align} L &= T - V = \frac{1}{2}mv^2 - V \\[6pt] \frac{d}{dt}\left(mv^2 - L\right) &= 0 \\[6pt] \frac{d}{dt}\left(mv^2 - \frac{1}{2}mv^2 + V\right) &= 0 \\[6pt] \frac{d}{dt}\left(\frac{1}{2}mv^2 + V\right) &= 0 \\[6pt] \frac{dE}{dt} &= 0 \end{align}
However, our universe is not globally symmetric with respect to time since spacetime itself evolves. Global energy conservation does not hold, even though local conservation (μTμν=0\nabla_\mu T^{\mu\nu} = 0) still applies.

Contracted Bianchi identities

μTμν +ΓαμμTαν +ΓαμνTμα =0\partial_\mu T^{\mu\nu} + \Gamma^\mu_{\alpha\mu} T^{\alpha\nu} + \Gamma^\nu_{\alpha\mu} T^{\mu\alpha} = 0
 
 
 
 
 
 

Recommendations