Continuous Probability

Creator
Creator
Seonglae Cho
Created
Created
2023 Mar 7 2:31
Editor
Edited
Edited
2024 Oct 21 12:9
Refs
Refs
Single point is always zero, need integral
P(X=x)=0,fX(x)0,ddxP(Xx)=fX(x)P(X=x ) = 0, f_X(x) \ne 0 , \frac{d}{dx}P(X\le x) = f_X(x)p(x)=dFdxxdF=xp(s)dsp(x) = \frac{dF}{dx}\\ \int_{-\infty}^{x} dF = \int_{-\infty}^{x} p(s)ds
Continuous Probability Notion
 
 
 
 
 
 

Recommendations