Probability Density Function

Creator
Creator
Seonglae Cho
Created
Created
2023 Mar 7 2:31
Editor
Edited
Edited
2024 Dec 3 12:10

PDF

P(aXb)=abfX(x)dxP(Xx)=FX(x)P(a\le X\le b) = \int_a^b f_X(x)dx \\ P(X\le x) = F_X(x)
can be greater than 1 at a particular point

Jacobian

The probability of the X interval is equal to the probability of the Y interval (thin rectangle area)
fY(y)dy=fX(x)dxf_Y(y)dy = f_X(x)dx

For example

if Y=X2Y=X^2, fX=dxdyfYf_X = \frac{dx}{dy}f_Y and dy=2xdxdy = 2 xdx. Therefore fY=12yf_Y = \frac{1}{2\sqrt{y}}
 
 
 
 
 
 
 

Recommendations