CTFT

Created
Created
2023 Sep 20 3:5
Editor
Creator
Creator
Seonglae Cho
Edited
Edited
2023 Nov 14 18:52

Continuous time Fourier transform

As TT\infty, x(t)=x~(t)x(t) = \tilde{x}(t) for any finite time interval
As a polar form X(jω)=X(jω)ejX(jω)X(j\omega) = |X(j\omega)|e^{j\angle X(j\omega)}
If x(t)x(t) is real, magnitude is even function of ω\omega and phase is an odd funtion of ω\omega
Fourier transform
X(jt)=x(t)ejwtdtX(jt) = \int_{-\infty}^\infty x(t)e^{-jwt}dt
Inverse Fourier transform
x(t)=12πX(jω)ejωtdωx(t) = \frac{1}{2\pi}\int_{-\infty}^\infty X(j\omega)e^{j\omega t}d\omega
f(x)g(x)FTF(jw)G(jw)f(x) \cdot g(x) \xleftrightarrow{FT} F(jw) * G(jw)
Inner product
→ orthogonal → below functions → these properties
Mixing linearity and time shifting make it easy to compute complex function’s FT like this
CTFT Properties
 
 

Derivation 하지말고 외워야

δ(t)=12πejωtdωδ(ω)=12πejωtdt\delta(t) = \frac{1}{2\pi}\int_{-\infty}^\infty e^{j\omega t}d\omega \newline \delta(\omega) = \frac{1}{2\pi}\int_{-\infty}^\infty e^{j\omega t}dt
Fourier Transform Examples
 
notion image
 
 
 
 
 
 

Recommendations