Delta function approximation

Creator
Creator
Seonglae Cho
Created
Created
2023 Oct 9 5:43
Editor
Edited
Edited
2023 Oct 10 14:54
Refs
Refs
Let narrow
Boxcar function
δΔ(t)\delta_\Delta(t), continuous unit step function uΔ(t)u_\Delta(t) for analogy
The continuous-time unit impulse can be viewed as a very narrow boxcar function.
δ(t)=ddtu(t)\delta(t) = \frac{d}{dt}u(t)
notion image
 
notion image
x(t)δ(tt0)=limΔ0x(t)δΔ(tt0)x(t0)δ(tt0)x(t)\delta(t - t_0) = lim_{\Delta \rightarrow0}x(t)\delta_\Delta(t - t_0) \approx x(t_0)\delta(t - t_0)
 
 

Using
Fourier Transform

δ(t)=12πejωtdωδ(ω)=12πejωtdt\delta(t) = \frac{1}{2\pi}\int_{-\infty}^\infty e^{j\omega t}d\omega \newline \delta(\omega) = \frac{1}{2\pi}\int_{-\infty}^\infty e^{j\omega t}dt
 
 
 
 
 
 
 

Recommendations