Discrete logarithm
In mathematics, for given real numbers a and b, the logarithm logb a is a number x such that bx = a. Analogously, in any group G, powers bk can be defined for all integers k, and the discrete logarithm logb a is an integer k such that bk = a. In number theory, the more commonly used term is index: we can write x = indr a (mod m) (read "the index of a to the base r modulo m") for r x ≡ a (mod m) if r is a primitive root of m and gcd(a,m) = 1.
https://en.wikipedia.org/wiki/Discrete_logarithm