ELBO

Creator
Creator
Seonglae Cho
Created
Created
2023 May 18 1:49
Editor
Edited
Edited
2024 Dec 22 16:6

Evidence of Lower BOund

notion image
Variational lower bound shows ELBO is lower bound of marginal likelihood i.e. pθ(x)p_\theta(x) marginal log likelihood. If we maximize ELBO, we can approximately maximize marginal likelihood pθ(x)p_\theta(x).
We cannot minimize the KL exactly in most cases, but we can minimize a function that mimics its behaviors. Thisis the evidence of lower bound.
logpθ(x)=KL(qϕ(zx)pθ(zx))+ELBO(qϕ(zx))logpθ(x)ELBO(qϕ(zx))\log p_\theta(x) = -\text{KL}(q_\phi(z|x) \| p_\theta(z|x)) + \text{ELBO}(q_\phi(z|x)) \\\Rightarrow \log p_\theta(x) \geq \text{ELBO}(q_\phi(z|x))
Minimize
KL Divergence
between P(xθ)P(x|\theta) and Q(x)Q(x)
좌항과 우항으로 나뉘는데, 좌항으로 kl을 최소화하여 분포사이 거리를 좁히고 우항은 z|x 상황에서 x|z log likelihood를 최대화해서 reconstruction 가능하게 한다
ELBO(qϕ(zx))=Eqϕ(zx)[logpθ(z,x)]Eqϕ(zx)[logqϕ(zx)]=Eqϕ(zx)[logqϕ(zx)+logpθ(z,x)]=KL(qϕ(zx)pθ(z))+Eqϕ(zx)[logpθ(xz)]\text{ELBO}(q_\phi(z|x)) \\ = \mathbb{E}_{q_\phi(z|x)} \left[ \log p_\theta(z, x) \right] - \mathbb{E}_{q_\phi(z|x)} \left[ \log q_\phi(z|x) \right] \\ = \mathbb{E}_{q_\phi(z|x)} \left[ - \log q_\phi(z|x) + \log p_\theta(z, x) \right] \\ = - \text{KL}(q_\phi(z|x) \| p_\theta(z)) + \mathbb{E}_{q_\phi(z|x)} \left[ \log p_\theta(x|z) \right]ELBO(x,Q,θ)=ΣzQ(z)logp(x,z;θ)Q(z)ELBO(x, Q, \theta) = \Sigma_zQ(z)log\frac{p(x,z;\theta)}{Q(z)}
That is, log  p(x;θ)ELBO(x,Q,θ),Q,θ,xlog \; p(x;\theta) \ge ELBO(x,Q,\theta), \forall Q, \theta, x
 
 
 
 
 
 

Recommendations