ERM

Creator
Creator
Seonglae Cho
Created
Created
2024 Nov 26 11:26
Editor
Edited
Edited
2025 Apr 28 22:50

Empirical Risk Minimization

minθ1ni=1n(f(xi;θ),yi)+Ω(θ)\min_{\theta}\frac{1}{n}\sum_{i=1}^n \ell\bigl(f(x_i;\theta),y_i\bigr)+\Omega(\theta)
A generalization of the Maximum Likelihood principle
MLE
: replace the log likelihood with any other loss function ll
L(θ)=1ni=1nl(yi,θ)+λC(θ)\mathcal{L}(\theta) = \frac{1}{n} \sum_{i=1}^n \mathcal{l}(y_i, \theta) + \lambda C(\theta)
When a loss function is computationally difficult to minimize, it is often replaced with convex upper bounds
 
 
 
 
 
 
 

Recommendations