Parameter Estimation

Creator
Creator
Seonglae Cho
Created
Created
2023 Mar 23 1:36
Editor
Edited
Edited
2025 Apr 28 20:51

Model Fitting, Fitting
Probability Distribution
, Parametric Learning

Methods find the most likely parameter θ^\hat\theta that explain the data DD and boil down to
θ^arg minθL(θ)\hat{\theta} \in \argmin_\theta \mathcal{L}(\theta)
if ΘR\Theta \subset R, Risk=bias2+varianceRisk = bias^2 + variance
statistical experiment be a sample X1X_1 … , XnX_n of i.i.d. random variables in some measurable space Ω, usually Ω ⊆ ℝ
hyperparameter α\alpha, DD is data set
  • While performing MLE estimation, we update the weights through back propagation to maximize the likelihood of the data, obtaining the optimal point estimation
  • While performing MAP estimation, we update the weights through back propagation to maximize the posterior probability, obtaining the optimal point estimation
  • While performing Bayesian inference, we update the weights through back propagation to calculate the posterior probability distribution, obtaining the optimal density estimation
MLE
is intuitive,
MAP
is a generalized MLE with non-constant log-prior, and
ERM
is a generalized form with any loss function and regularization term.
θ^MLE=argmaxθi=1nlogp(yixi;θ)\hat{\theta}_{\mathrm{MLE}} = \arg\max_{\theta} \sum_{i=1}^n \log p(y_i \mid x_i; \theta)\begin{align*} \hat{\theta}_{\mathrm{MAP}} &= \arg\max_{\theta}\Bigl[\sum_{i=1}^n \log p(y_i\mid x_i;\theta) + \log p(\theta)\Bigr] \\[6pt] &= \arg\min_{\theta}\Bigl[-\tfrac{1}{n}\bigl(\sum_{i=1}^n \log p(y_i\mid x_i;\theta) + \log p(\theta)\bigr)\Bigr] \\[6pt] &= \arg\min_{\theta}\Bigl[\tfrac{1}{n}\sum_{i=1}^n \underbrace{-\log p(y_i\mid x_i;\theta)}_{\ell(x_i,y_i;\theta)} + \underbrace{-\tfrac{1}{n}\log p(\theta)}_{\Omega(\theta)}\Bigr] \end{align*}θ^ERM=argminθ[1ni=1n(f(xi;θ),yi)  +  Ω(θ)]\hat{\theta}_{\mathrm{ERM}} = \arg\min_{\theta} \Bigl[\frac{1}{n}\sum_{i=1}^n \ell\bigl(f(x_i;\theta),y_i\bigr) \;+\;\Omega(\theta)\Bigr]
Point Estimations
 
 
Parameter Estimation Notion
 
 
 
 
 
 
 

Recommendations