Model Fitting, Fitting Probability Distribution
finds the most likely parameter that explain the data
if ,
statistical experiment be a sample … , of i.i.d.
random variables in some measurable space Ω, usually Ω ⊆ ℝ
hyperparameter , is data set
- While performing MLE estimation, we update the weights through back propagation to maximize the likelihood of the data, obtaining the optimal point estimation
- While performing MAP estimation, we update the weights through back propagation to maximize the posterior probability, obtaining the optimal point estimation
- While performing Bayesian inference, we update the weights through back propagation to calculate the posterior probability distribution, obtaining the optimal density estimation
Point Estimations
Parameter Optimizations