Parameter Estimation

Creator
Creator
Seonglae Cho
Created
Created
2023 Mar 23 1:36
Editor
Edited
Edited
2024 Dec 6 16:29

Model Fitting, Fitting
Probability Distribution
, Parametric Learning

Methods find the most likely parameter θ^\hat\theta that explain the data DD and boil down to
θ^arg minθL(θ)\hat{\theta} \in \argmin_\theta \mathcal{L}(\theta)
if ΘR\Theta \subset R, Risk=bias2+varianceRisk = bias^2 + variance
statistical experiment be a sample X1X_1 … , XnX_n of i.i.d. random variables in some measurable space Ω, usually Ω ⊆ ℝ
hyperparameter α\alpha, DD is data set
  • While performing MLE estimation, we update the weights through back propagation to maximize the likelihood of the data, obtaining the optimal point estimation
  • While performing MAP estimation, we update the weights through back propagation to maximize the posterior probability, obtaining the optimal point estimation
  • While performing Bayesian inference, we update the weights through back propagation to calculate the posterior probability distribution, obtaining the optimal density estimation
Point Estimations
 
 
Parameter Estimation Notion
 
 
 
 
 
 
 

Recommendations