Gaussian Process

Creator
Creator
Seonglae Cho
Created
Created
2024 Oct 1 0:25
Editor
Edited
Edited
2025 Jun 2 16:13

GP

Let f(X)=(f(x1),...,f(xn))f(X) = (f(x₁), ..., f(xₙ)). If f(X)f(X) follows a Gaussian distribution for any set of n points, then we say that f:XRf: X → R is a Gaussian process. A GP is characterized by its mean function m(x)m(x) and a covariance function K(x,x)0K(x, x′) ≥ 0, which is any
Mercer Kernel
.
f(x)GP(m(x),K(x,))f(x) \sim GP(m(x), K(x, \cdot))
where m(x)m(x) is the expected value off(x) f(x), and K(x,x)=E[(f(x)m(x))(f(x)m(x))T]K(x, x′) = \mathbb{E}[(f(x) - m(x))(f(x') - m(x'))^T].
p(fXX)=N(fXµX,KX,X)p(f_X |X) = \mathcal{N}(f_X |µ_X , K_{X,X} )
where μX=(m(x1),,m(xn))\mu_X = (m(x_1), \dots, m(x_n)) and KX,X(i,j)=K(xi,xj)K_{X,X}(i,j) = K(x_i, x_j).
 
 
 
Gaussian processes models
 
 
 
 

Visualization

Deep Neural Networks as Gaussian Processes
Lecture
 
 

Recommendations