GRU

Creator
Creator
Seonglae Cho
Created
Created
2021 Oct 6 10:17
Editor
Edited
Edited
2024 Oct 21 11:57

Gated recurrent unit

Selectively forget and retain historical information
Selectively incorporated through rr and Selectively balanced through zz with
Hadamard product
rt=σ(Wx,rxt+Wh,rht1+αx+αh)zt=σ(Wx,zxt+Wh,zht1+αx+αh)nt=g(Wx,nxt+rt(Wh,nht1+αh))ht=(1zt)nt+ztht1r_t = \sigma(W_{x, r} x_t + W_{h, r} h_{t-1} + \alpha_x + \alpha_h) \\ z_t = \sigma(W_{x, z} x_t + W_{h, z} h_{t-1} + \alpha_x + \alpha_h) \\ n_t = g(W_{x, n} x_t + r_t \odot (W_{h, n} h_{t-1} + \alpha_h)) \\ h_t = (1 - z_t) \odot n_t + z_t \odot h_{t-1}
GRUs have significantly more parameters than RNN
LSTM
에서 gate 2개로 줄여서 가중치가 적다. (출력 게이트 없음)
GRU Notion
 
 
 
 
 
 

Recommendations