Parseval's theorem

Creator
Creator
Seonglae Cho
Created
Created
2023 Sep 13 3:28
Editor
Edited
Edited
2023 Oct 13 2:45

The average power in the time domain is the sum of average powers in all harmonics

total energy is x[n]2=E\sum|x[n]|^2 = E_\infty
 

Parseval’s Relation

1TTx(t)2=k=ak2\frac{1}{T}\int_T |x(t)|^2 = \sum_ {k = -\infty} ^\infty |a_k|^21Nx[n]2=ak2\frac{1}{N}\sum|x[n]|^2 = \sum|a_k|^2
For each coefficient
notion image
the average power of the kkth harmonic component case
1TTakejkω0t2=ak2\frac{1}{T}\int_T|a_ke^{jk\omega_0t}|^2 = |a_k|^21Nk=<N>akejω0kn2=1Nk=<N>ak2=ak2\frac{1}{N}\sum_{k=<N>}|a_ke^{j\omega_0kn}|^2 = \frac{1}{N}\sum_{k=<N>}|a_k|^2 = |a_k|^2
 
 
 
 
 
 
 

Recommendations