Power Sampling

Creator
Creator
Seonglae ChoSeonglae Cho
Created
Created
2025 Oct 19 22:53
Editor
Edited
Edited
2025 Oct 27 11:28
Training-free reasoning improvement, inference-time inference algorithm with sampling-based decoding method using MCMC-based distribution resampling (distributional inference)
Traditional decoding methods adjust token-level probabilities for "local" exploration, while Power Sampling transforms the probability of entire sequences to perform "global" exploration as a meta-level decoding approach.

Power Transformation

This appears similar to changing decoding temperature, but is actually a power transformation on joint sequence likelihood. From to:

Sampling Framework

Uses Metropolis–Hastings to sample from this sharper distribution.
 
 
 
 
 

Recommendations