Ringoids, Ring-like structures
A ring is a set equipped with two binary operations (typically called addition and multiplication) where the set forms an Abelian Group under addition (closed) and a Semigroup under multiplication (closed). Semi Group
Ring theory Notion
Ring theory
In algebra, ring theory is the study of rings—algebraic structures in which addition and multiplication are defined and have similar properties to those operations defined for the integers. Ring theory studies the structure of rings, their representations, or, in different language, modules, special classes of rings, as well as an array of properties that proved to be of interest both within the theory itself and for its applications, such as homological properties and polynomial identities.
https://en.wikipedia.org/wiki/Ring_theory
Ring Theory 1: Ring Definition and Examples
Introduction to rings: defining a ring and giving examples. Knowledge of sets, proofs, and mathematical groups are recommended.
Practice problems:
1.) Which of the following sets are rings? If it is, prove it. If not, say which property of rings fails for that set (there may be more than one).
a) N = {1,2,3,4,5,...} under normal addition and multiplication
b) A = {a+b*sqrt(2) | a,b are rationals} under normal addition and multiplication
c) B = {all polynomials p(x) with integer coefficients}
d) C = {all polynomials p(x) with integer coefficients, where deg( p(x) ) is even}
2.) The set {0,2,4,6,8,10,12} is a ring with unity under the operations of addition mod 14 and multiplication mod 14. What is the unity of this ring?
3.) Let R be a commutative ring with unity, and let U(R) denote the set of units (elements with multiplicative inverses) of R. Prove that U(R) is a group under the multiplication defined in R.
https://www.youtube.com/watch?v=-ljA4ZsX5Es

0으로 나누어 보았습니다.
0으로 나누는 문제는 수학에서 까다로운 이슈입니다. 하지만 군, 환, 체를 이용하면 이 문제를 다룰 수 있는 방법이 있습니다. 영환(Zero Ring)은 모든 원소가 0인 환으로, 이를 통해 0으로 나누는 연산을 정의할 수 있습니다. 또한 바퀴이론(Wheel Theory)을 사용하면 원소를 추가하여 0으로 나누는 연산을 더 일반적인 방법으로 다룰 수 있습니다.
• blog : https://rayc20.tistory.com/334
• 교육 목적으로 영상 및 블로그 자료를 자유롭게 사용하셔도 좋습니다.
• 외주 및 광고 관련 문의는 받지 않습니다.
#수학 #나누기 #0 #대수 #현대대수학 #추상대수학
0:48 연산이란 무엇인가?
1:03 군(Group)
5:49 환(Ring)과 체(Field)
6:36 사칙연산
8:14 Zero Ring
9:29 0으로 나누면 무한대?
9:55 One-Point Compactification
12:00 Wheel Theory
16:31 에필로그
https://www.youtube.com/watch?v=n9BuGfCs5N4


Seonglae Cho