De Moivre–Laplace theorem
In probability theory, the de Moivre–Laplace theorem, which is a special case of the central limit theorem, states that the normal distribution may be used as an approximation to the binomial distribution under certain conditions. In particular, the theorem shows that the probability mass function of the random number of "successes" observed in a series of  independent Bernoulli trials, each having probability  of success, converges to the probability density function of the normal distribution with mean  and standard deviation , as  grows large, assuming  is not  or .
https://en.wikipedia.org/wiki/De_Moivre–Laplace_theorem