Variance

Creator
Creator
Seonglae Cho
Created
Created
2023 Mar 7 2:37
Editor
Edited
Edited
2025 Mar 24 12:39

The second moment about the mean

Spurious Pattern Comes from randomness of dataset

Variance captures how the random nature of the finite dataset not family of model; It captures how much a model changes if we train on a different training set. i.e. the sensitivity of the model to the randomness in the dataset.
Var(X)=E[(XE[X])2]=E[X2]2E[X]E[X]+E[X]2=E[X2]E[X]20Var(X) = E[(X - E[X])^2] \newline= E[X^2] - 2E[X]E[X] + E[X]^2 \newline = E[X^2] - E[X]^2 \ge 0Var(X)=Cov(X,X)Var(X) = Cov(X, X)

Addition rule

V(X±Y)=E[(x±y)2](μx±y)2=E[(x±y)2](μx±μy)2=E[x2±2xy+y2](μx2±2μxμy+μy2)=E(x2)±2E(xy)+E(y2)μx22μxμyμy2=E(x2)μx2±2(E(xy)μxμy)+E(y2)μy2=V(X)+V(Y)±2Cov(X,U)V(X \pm Y) = E\left[ (x \pm y)^2 \right] - \left( \mu_{x \pm y} \right)^2 \\ = E\left[ (x \pm y)^2 \right] - \left( \mu_x \pm \mu_y \right)^2 \\ = E\left[ x^2 \pm 2xy + y^2 \right] - \left( \mu_x^2 \pm 2\mu_x \mu_y + \mu_y^2 \right) \\ = E(x^2) \pm 2E(xy) + E(y^2) - \mu_x^2 \mp 2\mu_x \mu_y - \mu_y^2 \\ = E(x^2) - \mu_x^2 \pm 2 \left( E(xy) - \mu_x \mu_y \right) + E(y^2) - \mu_y^2 \\ = V(X) + V(Y) \pm 2\cdot Cov(X, U)V(X±Y)=V(X)+V(Y)±2Cov(X,Y)V(X\pm Y) = V(X) + V(Y) \pm2Cov(X, Y)V(X+Y)=V(X)+V(Y),if X and U are independentV(X+Y) = V(X) + V(Y), \text{if X and U are independent}
Variance Usages
 
 
 
 
 
 

Recommendations