Inverse Matrix

Creator
Creator
Seonglae Cho
Created
Created
2023 Apr 17 16:2
Editor
Edited
Edited
2025 Apr 27 21:31
A invertible  det(A)0  rank(A)=n  A has n pivot positions  Ax=0 has only x=0  A is row equivalent to In  columns of A are linearly independent  A is bijectiveA\ \text{invertible} \\ \Leftrightarrow\; \det(A) \neq 0 \\ \Leftrightarrow\; \text{rank}(A) = n \\ \Leftrightarrow\; A\ \text{has}\ n\ \text{pivot positions} \\ \Leftrightarrow\; A x = 0\ \text{has only}\ x = 0 \\ \Leftrightarrow\; A\ \text{is row equivalent to}\ I_n \\ \Leftrightarrow\; \text{columns of}\ A\ \text{are linearly independent} \\ \Leftrightarrow\; A\ \text{is bijective}
Inverse Matrix Notion
 
 
 
 
 
 
 

Recommendations