Multivariate Gaussian

Creator
Creator
Seonglae Cho
Created
Created
2024 Oct 14 9:29
Editor
Edited
Edited
2025 Apr 27 21:37
Refs

Multivariate Normal Distribution, Joint Normal Distribution

It is a single distribution and GMM is multiple.
Each random variable normally distributed, at the same time joint multi-variable normally distributed
fμ,Σ(x)=1(2π)n/2Σ1/2exp(12(xμ)TΣ1(xμ)),XN(μ,Σ)f_{\mu, \Sigma}(x) = \frac{1}{(2\pi)^{n/2} |\Sigma|^{1/2}} \exp\left( -\frac{1}{2} (x - \mu)^T \Sigma^{-1} (x - \mu) \right) , X\sim \mathcal{N(\mu, \Sigma)}
Covariance Matrix
affects exponential part of
Probability Density Function
(XY)N((μXμY),(σX2Cov(X,Y)Cov(X,Y)σY2)) \begin{pmatrix} X \\ Y \end{pmatrix} \sim \mathcal{N} \left( \begin{pmatrix} \mu_X \\ \mu_Y \end{pmatrix}, \begin{pmatrix} \sigma_X^2 & \text{Cov}(X,Y) \\ \text{Cov}(X,Y) & \sigma_Y^2 \end{pmatrix} \right)
Marginals
p(X1)=N(X1μ1,Σ11)p(X2)=N(X2μ2,Σ22)p(X_1) = \mathcal{N}(X_1|\mu_1, \Sigma_{11}) \\ p(X_2) = \mathcal{N}(X_2|\mu_2, \Sigma_{22})
Posterior
p(X1X2)=N(X1μ12,Σ12)p(X_1|X_2) = \mathcal{N}(X_1|\mu_{1|2} , \Sigma_{1|2})
where

Conditional Mean

How the mean of X1X_1 shifts when X2X_2 is given
μ12=μ1+Σ12Σ221(X2μ2)\mu_{1|2} = \mu_1 + \Sigma_{12} \Sigma_{22}^{-1} (X_2 - \mu_2)
generalized form with minus except notation
μii=μi+Σi,iΣi,i1(xiμi)\mu_{i|-i} = \mu_i + \Sigma_{i, -i} \Sigma_{-i, -i}^{-1} (x_{-i} - \mu_{-i})
generalized form with range notation
μi1:i1,i+1:n=μi+Σi,1:i1,i+1:nΣ1:i1,i+1:n,1:i1,i+1:n1(x1:i1,i+1:nμ1:i1,i+1:n)\mu_{i|1{:}i-1, i+1{:}n} = \mu_i + \Sigma_{i, 1{:}i-1, i+1{:}n} \Sigma_{1{:}i-1, i+1{:}n, 1{:}i-1, i+1{:}n}^{-1} (x_{1{:}i-1, i+1{:}n} - \mu_{1{:}i-1, i+1{:}n})
multi to multi with dimension analysis if we choose k variables for left side
μAB=μA+ΣA,BΣB,B1(xBμB)\mu_{A|B} = \mu_A + \Sigma_{A, B} \Sigma_{B, B}^{-1} (x_B - \mu_B)μA:k×1,ΣA,B:k×m,ΣB,B1:m×m,μAB:k×1\mu_A : k \times 1, \quad \Sigma_{A, B} : k \times m, \quad \Sigma_{B, B}^{-1} : m \times m, \quad \mu_{A|B} : k \times 1
Generalized version with a set notation
μSSc=μS+ΣS,ScΣSc,Sc1(XScμSc)\mu_{S \mid S^c} = \mu_S + \Sigma_{S, S^c} \Sigma_{S^c, S^c}^{-1} (X_{S^c} - \mu_{S^c})

Conditional Variance

Σ12=Σ11Σ12Σ221Σ21\Sigma_{1|2} = \Sigma_{11} - \Sigma_{12} \Sigma_{22}^{-1} \Sigma_{21}
generalized form with minus except notation
Σii=ΣiiΣi,iΣi,i1Σi,i\Sigma_{i|-i} = \Sigma_{ii} - \Sigma_{i, -i} \Sigma_{-i, -i}^{-1} \Sigma_{-i, i}
generalized form with range notation
Σi1:i1,i+1:n=ΣiiΣi,1:i1,i+1:nΣ1:i1,i+1:n,1:i1,i+1:n1Σ1:i1,i+1:n,i\Sigma_{i|1{:}i-1, i+1{:}n} = \Sigma_{ii} - \Sigma_{i, 1{:}i-1, i+1{:}n} \Sigma_{1{:}i-1, i+1{:}n, 1{:}i-1, i+1{:}n}^{-1} \Sigma_{1{:}i-1, i+1{:}n, i}
multi to multi with dimension analysis if we choose k variables for left side
ΣAB=ΣA,AΣA,BΣB,B1ΣA,B\Sigma_{A|B} = \Sigma_{A, A} - \Sigma_{A, B} \Sigma_{B, B}^{-1} \Sigma_{A, B}^\topΣA,A:k×k,ΣA,B:k×m,ΣB,B1:m×m,ΣAB:k×k\Sigma_{A, A} : k \times k, \quad \Sigma_{A, B} : k \times m, \quad \Sigma_{B, B}^{-1} : m \times m, \quad \Sigma_{A|B} : k \times k
Generalized version with a set notation
ΣSSc=ΣS,SΣS,ScΣSc,Sc1ΣSc,S\Sigma_{S \mid S^c} = \Sigma_{S, S} - \Sigma_{S, S^c} \Sigma_{S^c, S^c}^{-1} \Sigma_{S^c, S}

Inverse matrix

If the covariance matrix is singular, it means that the random variables are fully constrained or deterministic, not truly random. For example, if X3=X1+X2X_3 = X_1 + X_2, then the distribution of (X1,X2,X3)(X_1, X_2, X_3) would collapse into a plane, not a proper 3D Gaussian distribution.

2-variables

p(X1X2=x2)=N(μ1+ρσ1σ2(x2μ2), (1ρ2)σ12)p(X2X1=x1)=N(μ2+ρσ2σ1(x1μ1), (1ρ2)σ22)p(X_1 \mid X_2 = x_2) = \mathcal{N}\left( \mu_1 + \rho \frac{\sigma_1}{\sigma_2}(x_2 - \mu_2),\ (1-\rho^2)\sigma_1^2 \right) \\p(X_2 \mid X_1 = x_1) = \mathcal{N}\left( \mu_2 + \rho \frac{\sigma_2}{\sigma_1}(x_1 - \mu_1),\ (1-\rho^2)\sigma_2^2 \right)

3-variables

p(X1X2=x2,X3=x3)=N(μ1+(α12σ32α13α23σ22σ32α232α13σ22α12α23σ22σ32α232)(x2μ2x3μ3), σ12α122σ322α12α13α23+α132σ22σ22σ32α232)p(X_1 \mid X_2=x_2, X_3=x_3) = \mathcal{N}\left( \mu_1 + \begin{pmatrix} \frac{\alpha_{12} \sigma_3^2 - \alpha_{13} \alpha_{23}}{\sigma_2^2 \sigma_3^2 - \alpha_{23}^2} \\ \frac{\alpha_{13} \sigma_2^2 - \alpha_{12} \alpha_{23}}{\sigma_2^2 \sigma_3^2 - \alpha_{23}^2} \end{pmatrix}^\top \begin{pmatrix} x_2 - \mu_2 \\ x_3 - \mu_3 \end{pmatrix} ,\ \sigma_1^2 - \frac{\alpha_{12}^2 \sigma_3^2 - 2 \alpha_{12} \alpha_{13} \alpha_{23} + \alpha_{13}^2 \sigma_2^2}{\sigma_2^2 \sigma_3^2 - \alpha_{23}^2} \right)p(X2X1=x1,X3=x3)=N(μ2+(α12σ32α23α13σ12σ32α132α23σ12α12α13σ12σ32α132)(x1μ1x3μ3), σ22α122σ322α12α23α13+α232σ12σ12σ32α132)p(X_2 \mid X_1=x_1, X_3=x_3) = \mathcal{N}\left( \mu_2 + \begin{pmatrix} \frac{\alpha_{12} \sigma_3^2 - \alpha_{23} \alpha_{13}}{\sigma_1^2 \sigma_3^2 - \alpha_{13}^2} \\ \frac{\alpha_{23} \sigma_1^2 - \alpha_{12} \alpha_{13}}{\sigma_1^2 \sigma_3^2 - \alpha_{13}^2} \end{pmatrix}^\top \begin{pmatrix} x_1 - \mu_1 \\ x_3 - \mu_3 \end{pmatrix} ,\ \sigma_2^2 - \frac{\alpha_{12}^2 \sigma_3^2 - 2 \alpha_{12} \alpha_{23} \alpha_{13} + \alpha_{23}^2 \sigma_1^2}{\sigma_1^2 \sigma_3^2 - \alpha_{13}^2} \right)p(X3X1=x1,X2=x2)=N(μ3+(α13σ22α12α23σ12σ22α122α23σ12α12α13σ12σ22α122)(x1μ1x2μ2), σ32α132σ222α13α23α12+α232σ12σ12σ22α122)p(X_3 \mid X_1=x_1, X_2=x_2) = \mathcal{N}\left( \mu_3 + \begin{pmatrix} \frac{\alpha_{13} \sigma_2^2 - \alpha_{12} \alpha_{23}}{\sigma_1^2 \sigma_2^2 - \alpha_{12}^2} \\ \frac{\alpha_{23} \sigma_1^2 - \alpha_{12} \alpha_{13}}{\sigma_1^2 \sigma_2^2 - \alpha_{12}^2} \end{pmatrix}^\top \begin{pmatrix} x_1 - \mu_1 \\ x_2 - \mu_2 \end{pmatrix} ,\ \sigma_3^2 - \frac{\alpha_{13}^2 \sigma_2^2 - 2 \alpha_{13} \alpha_{23} \alpha_{12} + \alpha_{23}^2 \sigma_1^2}{\sigma_1^2 \sigma_2^2 - \alpha_{12}^2} \right)
 
 
 
 
 
 
 
 

Recommendations