MAP

Created
Created
2023 Mar 23 1:42
Editor
Creator
Creator
Seonglae Cho
Edited
Edited
2024 Dec 3 11:11
Refs

Maximum A Posteriori

θ^MAP=arg maxθp(θD)=arg maxθlogp(θD)\hat{\theta}_{MAP} = \argmax_\theta p(\theta | \mathcal{D}) = \argmax_\theta \log p(\theta | \mathcal{D})
  • priori mean ‘from the earlier
  • posteriori means ‘from the later
finds the parameters θ~MAP\tilde{\theta}_{MAP} maximizing a posteriori distribution
assume θ\theta also has some distribution and find optimal θ\theta
We assume a zero-mean Gaussian prior with covariance Σ for parameters θ\theta
L(θ)=1ni=1nl(y,θ)+λC(θ)\mathcal{L}(\theta) = \frac{1}{n}\sum_{i=1}^n l(y, \theta) + \lambda C(\theta)
with λ0\lambda \ge0 called the regularization parameter and CC is a measure of complexity
If we use the
Log-likelihood function
, a common penalty is to use C(θ)=logp(θ)C(\theta) = -\log p(\theta) where p(θ)p(\theta) is the prior. By setting λ=1n\lambda = \frac{1}{n}, and ignoring the 1n\frac{1}{n} which does not depend on θ\theta.
L(θ)=i=1nlogp(Yiθ)+logp(θ)=(logp(Dθ)+logp(θ))=logp(θD)+logp(D)=logp(θD)L(\theta) = - \sum_{i=1}^n \log p(Y_i | \theta) + \log p(\theta) = - (\log p(D | \theta) + \log p(\theta)) = - \log p(\theta | D) + \log p(D) = \log p(\theta|\mathcal{D})
When we use a log form of
Bayes Theorem
, minimizing this is equivalent to maximizing the log posterior:
MAP
 
 
 
 
 
 

Recommendations