The DFS analysis-synthesis pairperiodic focused DTFS with discrete frequencyx^[n]↔DFSX^[k]\hat x[n] \xleftrightarrow{DFS} \hat X[k]x^[n]DFSX^[k]Analysis: X^[k]=∑n=0N−1x^[k]e−j2πkn/NSynthesis: x^[n]=1N∑k=0N−1X^[k]ej2πkn/N\text{Analysis: }\hat X[k] = \sum_{n=0}^{N-1} \hat x[k] e^{-j2\pi kn / N} \newline \text {Synthesis: } \hat x[n] =\frac{1}{N} \sum_{k=0}^{N-1} \hat X[k] e^{j2\pi kn / N}Analysis: X^[k]=∑n=0N−1x^[k]e−j2πkn/NSynthesis: x^[n]=N1∑k=0N−1X^[k]ej2πkn/NSince 1N∑n=0N−1ej(2π/N)(k−r)n={1,k-r = mN0,else\text {Since } \frac{1}{N} \sum_{n=0}^{N-1}e^{j(2\pi/N)(k-r)n} = \begin{cases} 1, & \text{k-r = mN}\\ 0, & \text{else} \end{cases}Since N1∑n=0N−1ej(2π/N)(k−r)n={1,0,k-r = mNelseDFS NotionDFS Periodic convolution Data Sampling 처럼 discrete signal DTFT로 continuous frequency 가졌던 거를 2πk/N2\pi k /N 2πk/N으로 sampling하면 x[n]x[n]x[n] → x^[n]\hat x[n]x^[n] 이 된다. 이것도 듀얼리티이고 discrete의 핵심X(ejω)=∑k=−∞∞2πNX^[k]δ(ω−2πkN)X(e^{j\omega}) = \sum_{k=-\infty}^\infty \frac{2\pi}{N} \hat X[k]\delta(\omega - \frac{2\pi k}{N})X(ejω)=∑k=−∞∞N2πX^[k]δ(ω−N2πk)