SDS Loss

Creator
Creator
Seonglae ChoSeonglae Cho
Created
Created
2024 Mar 21 6:58
Editor
Edited
Edited
2025 Jun 20 15:15
Refs
Refs

Score Distillation Sampling

First introduced in Google's
DreamFusion

Score Distillation Sampling (
SDS Loss
)

A new loss function that extracts gradients from the diffusion model's score function to optimize randomly initialized NeRF parameters.
Score predictions (denoising direction) and actual noisy data differences are used to calculate MSE gradient (parameter direction), aiming for a density distillation loss effect
 
 
 
[논문리뷰] DreamFusion: Text-to-3D using 2D Diffusion
2D diffusion model을 3D object synthesis에서 사용가능하게 하는 Score Distillation Sampling(SDS)를 소개한다
[논문리뷰] DreamFusion: Text-to-3D using 2D Diffusion
 
 

Recommendations